ANALOG & DIGITAL ELECTRONICS

Code: ESC-301
Contact: 3L

<table>
<thead>
<tr>
<th>Name of the Course:</th>
<th>Analog & Digital Electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code: ESC-301</td>
<td>Semester: III</td>
</tr>
<tr>
<td>Duration: 6 months</td>
<td>Maximum Marks: 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: 3 hrs./week</td>
<td>Mid Semester exam: 15</td>
</tr>
<tr>
<td>Tutorial: NIL</td>
<td>Assignment and Quiz: 10 marks</td>
</tr>
<tr>
<td>Practical:</td>
<td>Attendance: 5 marks</td>
</tr>
<tr>
<td></td>
<td>End Semester Exam: 70 Marks</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>3</td>
</tr>
</tbody>
</table>

Objective:

1. To acquire the basic knowledge of different analog components and their applications.
2. To acquire the basic knowledge of digital logic levels and application of knowledge to understand digital electronics circuits.
3. To prepare students to perform the analysis and design of various digital electronic circuits.

Pre-Requisite:

1. Basic Electronics Parts I & II learned in the First year, semesters 1 & 2. Basic BJT,
2. Basic concept of the working of P-N diodes, Schottky diodes,
3. Basic FETs and OPAMP as a basic circuit component. Concept of Feedback

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs/Unit</th>
<th>Marks/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Different Classes of Amplifiers - (Class-A, B, AB and C - basic concepts, power, efficiency; Recapitulation of basic concepts of Feedback and Oscillation, Phase Shift, Wein Bridge oscillators A stable & Mono stable Multi vibrators; Schimtt Trigger circuits, 555 Timer.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Binary Number System & Boolean Algebra (recapitulation); BCD, ASCII, EBDIC, Gray codes and their conversions; Signed binary number representation with 1's and 2's complement methods, Binary arithmetic, Venn diagram, Boolean algebra (recapitulation); Representation in SOP and POS forms; Minimization of logic</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
expressions by algebraic method. Combinational circuits - Adder and Subtractor circuits (half & full adder & subtractor); Encoder, Decoder, Comparator, Multiplexer, Demultiplexer and Parity Generator

| 3 | Sequential Circuits - Basic Flip-flop & Latch, Flip-flops -SR, JK, D, T and JK Master-slave Flip Flops, Registers (SISO, SIPO, PIPO, PISO) Ring counter, Johnson counter Basic concept of Synchronous and Asynchronous counters (detail design of circuits excluded), Design of Mod N Counter |

| 4. | A/D and D/A conversion techniques – Basic concepts (D/A :R-2-R only [2L] A/D: successive approximation [2L]) Logic families- TTL, ECL, MOS and CMOS - basic concepts. (2L) |

| 10 | |

Text book and Reference books:

2. Principles of Electronic Devices & circuits—B L Thereja & Sedha—S Chand
7. Bell-Linear IC & OP AMP—Oxford
8. P. Raja- Digital Electronics- Scitech Publications
9. Morries Mano- Digital Logic Design- PHI
10. R. P. Jain—Modern Digital Electronics, 2/e, McGraw Hill
13. Tocci, Widmer, Moss- Digital Systems, 9/e- Pearson

Course Outcomes:

On completion of the course students will be able to

ESC-301.1 Realize the basic operations of different analog components.
ESC-301.2 Realize basic gate operations and laws Boolean algebra.
ESC-301.3 Understand basic structure of digital computer, stored program concept and different arithmetic and control unit operations.
Data Structure & Algorithm

Code: PCC-CS301
Contacts: 3L

<table>
<thead>
<tr>
<th>Name of the Course:</th>
<th>Data Structure & Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code: PCC-CS301</td>
<td>Semester: III</td>
</tr>
<tr>
<td>Duration: 6 months</td>
<td>Maximum Marks: 100</td>
</tr>
</tbody>
</table>

Teaching Scheme

Theory: 3 hrs./week	Mid Semester exam: 15
Tutorial: NIL	Assignment and Quiz: 10 marks
Practical:	End Semester Exam: 70 Marks
Credit Points:	3

Objective:

1. To learn the basics of abstract data types.
2. To learn the principles of linear and nonlinear data structures.
3. To build an application using sorting and searching.

Pre-Requisite:

1. CS 201 (Basic Computation and Principles of C)
2. M101 & M201 (Mathematics), basics of set theory

Unit Content

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs/Unit</th>
<th>Marks/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space trade off. Searching: Linear Search and Binary Search Technique sand their complexity analysis.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Stacks and Queues: ADT Stack and its operations: Algorithms and their complexity analysis, Applications of Stacks: Expression Conversion and evaluation – corresponding algorithms and complexity analysis. ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority Queue; Operations on each types of Queues: Algorithms and their analysis.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Linked Lists: Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, Doubly linked list:</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis.

Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree, Binary Search Tree, AVL Tree; Tree operations on each of the trees and their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+ Tree: definitions, algorithms and analysis.

4. Sorting and Hashing: Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort; Performance and Comparison among all the methods, Hashing. Graph: Basic Terminologies and Representations, Graph search and traversal algorithms and complexity analysis.

<table>
<thead>
<tr>
<th>Text book and Reference books:</th>
</tr>
</thead>
</table>

Course Outcomes:

On completion of the course students will be able to

- PCC-CS301.1 Differentiate how the choices of data structure & algorithm methods impact the performance of program.
- PCC-CS301.2 Solve problems based upon different data structure & also write programs.
- PCC-CS301.3 Identify appropriate data structure & algorithmic methods in solving problem.
- PCC-CS301.4 Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing.
- PCC-CS301.5 Compare and contrast the benefits of dynamic and static data structures implementations.
Computer Organization
Code: PCC-CS302
Contacts: 3L

Name of the Course: Computer Organization

Course Code: PCC-CS302 Semester: III
Duration: 6 months Maximum Marks: 100

Teaching Scheme
Theory: 3 hrs./week Mid Semester exam: 15
Tutorial: NIL Assignment and Quiz: 10 marks
Practical: Attendance: 5 marks

Examination Scheme
End Semester Exam: 70 Marks

Objective:
1. To prepare students to perform the analysis and design of various digital electronic circuits.
2. To know how Computer Systems work & its basic principles.
3. To know how I/O devices are being accessed and its principles etc.

Pre-Requisite:
1. Concept of basic components of a digital computer, Basic concept of Fundamentals & Programme structures. Boolean Algebra
2. Basic number systems, Binary numbers, representation of signed and unsigned numbers, Binary Arithmetic as covered in Basic Computation & Principles of Computer Programming
3. Boolean Algebra

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs/Unit</th>
<th>Marks/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic organization of the stored program computer and operation sequence for execution of a program. Role of operating systems and compiler/assembler. Fetch, decode and execute cycle, Concept of operator, operand, registers and storage, Instruction format. Instruction sets and addressing modes. [7L] Commonly used number systems. Fixed and floating point representation of numbers.[1L]</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Maulana Abul Kalam Azad University of Technology, West Bengal
(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering
(Applicable from the academic session 2018-2019)

| 3 | implementation of CPU-memory interfacing. [2L]
| | Memory organization, static and dynamic memory, memory hierarchy, associative memory. [3L]
| | Cache memory, Virtual memory. Data path design for read/write access. [5L] | 10 |

| 4 | Design of control unit - hardwired and microprogrammed control. [3L]
| | Introduction to instruction pipelining. [2L]
| | Introduction to RISC architectures. RISC vs CISC architectures. [2L]
| | I/O operations - Concept of handshaking, Polled I/O, interrupt and DMA. [3L] | 10 |

Text book and Reference books:
5. N. senthil Kumar, M. Saravanan, S. Jeevananthan, “Microprocessors and Microcontrollers” OUP

Course Outcomes:

On completion of the course students will be able to

- PCC-CS302.1 Understand basic structure of digital computer, stored program concept and different arithmetic and control unit operations.
- PCC-CS302.2 Understand basic structure of different combinational circuits- multiplexer, decoder, encoder etc.
- PCC-CS302.3 Perform different operations with sequential circuits.
- PCC-CS302.4 Understand memory and I/O operations.
Mathematics-III (Differential Calculus)

Name of the Course: Mathematics-III (Differential Calculus)
Course Code: BSC-301
Semester: III
Duration: 6 months
Maximum Marks: 100

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: 2 hrs./week</td>
<td>Mid Semester exam: 15</td>
</tr>
<tr>
<td>Tutorial: NIL</td>
<td>Assignment and Quiz: 10 marks</td>
</tr>
<tr>
<td></td>
<td>Attendance: 5 marks</td>
</tr>
<tr>
<td>Practical: NIL</td>
<td>End Semester Exam: 70 Marks</td>
</tr>
</tbody>
</table>

Credit Points: 2

Objective:
1. To know Convergence of sequence and series
2. To know Limit, continuity and partial derivatives, Chain rule, Implicit function
3. To know First Order Differential Equation, Exact, Linear and Bernoulli’s equations, Basic Concept of graph, Walk, Path Circuit, Euler and Hamiltonian graph, digraph

Pre-Requisite:
1. Concept Linear Algebra Determinant and its properties (up to third order)
2. Minor and cofactors, Matrices, addition, multiplication and transpose of a matrix, Symmetric and skew-symmetric

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs/Unit</th>
<th>Marks/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Convergence of sequence and series, tests for convergence, power series, Taylor's series. Series for exponential, trigonometric and logarithmic functions.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Limit, continuity and partial derivatives, Chain rule, Implicit function, Jacobian, Directional derivatives, Total derivative; Maxima, minima and saddle points; Gradient, curl and divergence and related problems.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Double and triple integrals (Cartesian and polar), change of order of integration in double integrals, Change of variables (Cartesian to polar). Theorems of Green, Gauss and Stokes (Statement only) and related problems.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>First Order Differential Equation, Exact, Linear and Bernoulli’s equations, Equations of first order but not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut’s form, general & singular solution. [5L]</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Second order linear differential equations with constant coefficients, D-operator method, method of variation of parameters, Cauchy-Euler equation. [4L]

5 Basic Concept of graph, Walk, Path Circuit, Euler and Hamiltonian graph, diagraph.
Matrix Representation: Incidence & Adjacency matrix.
Tree: Basic Concept of tree, Binary tree, Spanning Tree, Kruskal and Prim’s algorithm for finding the minimal spanning tree.

Textbook and Reference books:
3. Co-ordinate Geometry, S. L. Loney
4. Integral Calculus, Das and Mukherjee, U N Dhar Pvt. Ltd.
5. Differential Calculus, Das and Mukherjee, U N Dhar Pvt. Ltd.
6. Advanced Engineering Mathematics, E Kreyszig,

Course Outcomes:

On completion of the course students will be able to

BSC-301.1 Express a logic sentence in terms of predicates, quantifiers, and logical connectives.
BSC-301.2 Apply the rules of inference and methods of proof including direct and indirect proof forms, proof by contradiction, and mathematical induction.
BSC-301.3 Use tree and graph algorithms to solve problems
BSC-301.4 Evaluate Boolean functions and simplify expressions using the properties of Boolean algebra.
Economics for Engineers (Humanities-II)

Code: HSMC-301
Contacts: 3L

<table>
<thead>
<tr>
<th>Name of the Course:</th>
<th>Economics for Engineers (Humanities-II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code:</td>
<td>HSMC-301</td>
</tr>
<tr>
<td>Semester:</td>
<td>III</td>
</tr>
<tr>
<td>Duration:</td>
<td>6 months</td>
</tr>
<tr>
<td>Maximum Marks:</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: 3 hrs./week</td>
<td>Mid Semester exam: 15</td>
</tr>
<tr>
<td>Tutorial: NIL</td>
<td>Assignment and Quiz: 10 marks</td>
</tr>
<tr>
<td>Practical: NIL</td>
<td>Attendance: 5 marks</td>
</tr>
<tr>
<td></td>
<td>End Semester Exam: 70 Marks</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>3</td>
</tr>
</tbody>
</table>

Objective:

1. Understand the role and scope of Engineering Economics and the process of economic decision making.
2. Understand the different concepts of cost and different cost estimation techniques.
3. Familiarization with the concepts of cash flow, time value of money and different interest formulas.
4. Appreciation of the role of uncertainty in future events and using different concepts from probability to deal with uncertainty.
5. Understand the concepts of Depreciation and Replacement analysis along with their methods of calculation.
6. Familiarization with the phenomenon of inflation and the use of price indices in engineering Economics.
7. Introduction to basic concepts of Accounting and Financial Management.

Pre-Requisite:

1. Mathematics

<table>
<thead>
<tr>
<th>Unit</th>
<th>Content</th>
<th>Hrs/Unit</th>
<th>Marks/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3. Cash Flow, Interest and Equivalence: Cash Flow –</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **Diagrams, Categories & Computation, Time Value of Money, Debt repayment, Nominal& Effective Interest.**

2. **Cash Flow & Rate of Return Analysis – Calculations, Treatment of Salvage Value, Annual Cash Flow Analysis, Analysis Periods; Internal Rate of Return, Calculating Rate of Return, Incremental Analysis; Best Alternative Choosing an Analysis Method, Future Worth Analysis, Benefit-Cost Ratio Analysis, Sensitivity and Breakeven Analysis. Economic Analysis In The Public Sector -Quantifying And Valuing Benefits & drawbacks.**

3. **Inflation and Price Change – Definition, Effects, Causes, Price Change with Indexes, Types of Index, Composite vs Commodity Indexes, Use of Price Indexes In Engineering Economic Analysis, Cash Flows that inflate at different Rates.**

6. **Depreciation - Basic Aspects, Deterioration & Obsolescence, Depreciation And Expenses, Types Of Property, Depreciation Calculation Fundamentals, Depreciation And Capital Allowance Methods, Straight-Line Depreciation Declining Balance Depreciation, Common Elements Of Tax Regulations For Depreciation And Capital Allowances.**

7. **Replacement Analysis - Replacement Analysis Decision Map, Minimum Cost Life of a New Asset, Marginal Cost, Minimum Cost Life Problems.**

Text book and Reference books:
Maulana Abul Kalam Azad University of Technology, West Bengal
(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Computer Science & Engineering
(Applicable from the academic session 2018-2019)

2. Donald Newnan, Ted Eschembach, Jerome Lavelle: Engineering Economics Analysis, OUP
5. R. Paneer Seelvan: Engineering Economics, PHI

Course Outcome:

On completion of the course students will be able to
 HSMC-301.1 Make different economic decisions and estimate engineering costs by applying different cost estimation models.
 HSMC-301.2 Create cash flow diagrams for different situations and use different interest formulae to solve associated problems.
 HSMC-301.3 Take decisions regarding different engineering projects by using various criteria like rate of return analysis, present worth analysis, cost-benefit analysis etc.
 HSMC-301.4 Incorporate the effect of uncertainty in economic analysis by using various concepts like expected value, estimates and simulation.
 HSMC-301.5 Understand the concepts of depreciation and replacement analysis and solve associated problems.
 HSMC-301.6 Understand the process of inflation and use different price indices to adjust for its effect.
 HSMC-301.7 Apply the various concepts of Accounting like balance sheet and ratio analysis.
 HSMC-301.8 Understand the scope of Finance and the role of financial planning and management.
PRACTICAL SYLLABUS
Semester III

Analog & Digital Electronics Lab
Code: ESC-391
Contacts: 4P

<table>
<thead>
<tr>
<th>Name of the Course:</th>
<th>Analog & Digital Electronics Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code: ESC-391</td>
<td>Semester: III</td>
</tr>
<tr>
<td>Duration:6 months</td>
<td>Maximum Marks:100</td>
</tr>
</tbody>
</table>

Teaching Scheme:
- Theory: Continuous Internal Assessment
- Tutorial: NIL
- Practical: 4 hrs./week
- Distribution of marks:40
- Credit Points: 2

Course Outcomes:
1. ESC-301.1
2. ESC-301.2
3. ESC-301.3

Pre-Requisite:
Pre-requisites as in ESC-301

Laboratory Experiments:

Analog Electronics
1. Design a Class A amplifier
2. Design a Phase-Shift Oscillator
3. Design of a Schmitt Trigger using 555 timer

Digital Electronics
4. Design a Full Adder using basic gates and verify its output / Design a Full Subtractor circuit using basic gates and verify its output.
5. Construction of simple Decoder & Multiplexer circuits using logic gates.
7. Design of Shift Register using J-K / D Flip Flop
8. Realization of Synchronous Up/Down counter
9. Design of MOD- N Counter
10. Study of DAC

Any experiment specially designed by the college
(Detailed instructions for Laboratory Manual to be followed for further guidance)
Data Structure & Algorithm Lab
Code: PCC-CS391
Contacts: 4P

<table>
<thead>
<tr>
<th>Name of the Course:</th>
<th>Data Structure & Algorithm Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code:</td>
<td>PCC-CS391</td>
</tr>
<tr>
<td>Semester: III</td>
<td></td>
</tr>
<tr>
<td>Duration: 6 months</td>
<td>Maximum Marks: 100</td>
</tr>
</tbody>
</table>

Teaching Scheme:
- **Theory:** Continuous Internal Assessment
- **Tutorial:** NIL
- **Practical:** 4 hrs./week
- **Distribution of marks:** 40
- **Credit Points:** 2

Course Outcomes:
1. PCC-CS301.1
2. PCC-CS301.2
3. PCC-CS301.3
4. PCC-CS301.4
5. PCC-CS301.5

Pre-Requisite:
Pre-requisites as in PCC-CS301

Laboratory Experiments:

Linear Data Structure
1. Implementation of array operations
2. Stacks and Queues: adding, deleting elements
 Circular Queue: Adding & deleting elements
3. Merging Problem: Evaluation of expressions operations on Multiple stacks & queues
4. Implementation of linked lists: inserting, deleting, inverting a linked list.
 Implementation of stacks & queues using linked lists
5. Polynomial addition, Polynomial multiplication

Non Linear Data Structure
6. Recursive and Non-recursive traversal of Trees
7. Threaded binary tree traversal. AVL tree implementation
8. Application of Trees. Application of sorting and searching algorithms
9. Hash tables implementation: searching, inserting and deleting, searching & sorting techniques

Any experiment specially designed by the college
(Detailed instructions for Laboratory Manual to be followed for further guidance)
Computer Organization Lab
Code: PCC-CS392
Contacts: 4P

<table>
<thead>
<tr>
<th>Name of the Course:</th>
<th>Computer Organization Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code: PCC-CS392</td>
<td>Semester: III</td>
</tr>
<tr>
<td>Duration: 6 months</td>
<td>Maximum Marks: 100</td>
</tr>
</tbody>
</table>

Teaching Scheme:
- **Theory:** Continuous Internal Assessment
- **Tutorial:** NIL
- **Practical:** 4 hrs./week
 Distribution of marks: 40
- **Credit Points:** 2

Course Outcomes:
1. PCC-CS302.1
2. PCC-CS302.2
3. PCC-CS302.3
4. PCC-CS302.4

Pre-Requisite:
Pre-requisites as in PCC-CS302

Laboratory Experiments:
1. Familiarity with IC-chips: a) Multiplexer, b) Decoder, c) Encoder
 b) Comparator
 Truth Table verification and clarification from Data-book.
2. Design an Adder/Subtractor composite unit.
3. Design a BCD adder.
5. Use a multiplexer unit to design a composite ALU
6. Use ALU chip for multibit arithmetic operation
7. Implement read write operation using RAM IC
8. 8. (a) & (b) Cascade two RAM ICs for vertical and horizontal expansion.

Any experiment specially designed by the college
(Detailed instructions for Laboratory Manual to be followed for further guidance)
Maulana Abul Kalam Azad University of Technology, West Bengal
(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Computer Science & Engineering
(Applicable from the academic session 2018-2019)

IT Workshop (Sci Lab/MATLAB/Python/R)
Code: PCC-CS393
Contacts: 4P

<table>
<thead>
<tr>
<th>Name of the Course:</th>
<th>IT Workshop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code: PCC-CS392</td>
<td>Semester: III</td>
</tr>
<tr>
<td>Duration:6 months</td>
<td>Maximum Marks:100</td>
</tr>
<tr>
<td>Teaching Scheme:</td>
<td></td>
</tr>
<tr>
<td>Theory: NIL</td>
<td>Continuous Internal Assessment</td>
</tr>
<tr>
<td>Tutorial: NIL</td>
<td>External Assessment:60</td>
</tr>
<tr>
<td>Practical: 4 hrs./week</td>
<td>Distribution of marks:40</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>2</td>
</tr>
<tr>
<td>Course Outcomes:</td>
<td></td>
</tr>
<tr>
<td>1 To master an understanding of scripting & the contributions of scripting languages</td>
<td></td>
</tr>
<tr>
<td>2 Design real life problems and think creatively about solutions</td>
<td></td>
</tr>
<tr>
<td>3 Apply a solution in a program using R/Matlab/Python.</td>
<td></td>
</tr>
<tr>
<td>4 To be exposed to advanced applications of mathematics, engineering and natural sciences to program real life problems.</td>
<td></td>
</tr>
<tr>
<td>Pre-Requisite:</td>
<td></td>
</tr>
<tr>
<td>1. Knowledge of Programming Logic</td>
<td></td>
</tr>
<tr>
<td>2. Experience with a high level language (C/C++,) is suggested.</td>
<td></td>
</tr>
<tr>
<td>3. Prior knowledge of a scripting language and Object-Oriented concepts is helpful but not mandatory.</td>
<td></td>
</tr>
</tbody>
</table>

Practical Syllabus

Programming in R

1. Introduction to mechanism for statistics, data analysis, and machine learning; Introduction of R Programming, How to install and run R, Use of R help files, R Sessions, R Objects – Vectors, Attributes, Matrices, Array, Class, List, Data Frames etc. Operators in R.

2. R Programming Structures, Control Statements, Loops, Repeat and Break, R-Function, R-Vector Function, Recursive Function in R.

3. R Packages (Install and Use), Input/Output Features in R, Reading or Writing in File. Data Manipulation in R, Rearranging data, Random Number and Simulation, Statistical methods like min, max, median, mean, length, Linear Regression, Normal Distribution, Decision tree

Programming in Matlab

Introduction
Why MATLAB?, History, Its strengths, Competitors, Starting MATLAB, Using MATLAB as a calculator, Quitting MATLAB

Basics
Familiar with MATLAB windows, Basic Operations, MATLAB-Data types, Rules about variable names, Predefined variables

Programming-I
Vector, Matrix, Array Addressing, Built-in functions, Mathematical Operations, Dealing with strings (Array of characters), Array of array (cell) concept

Programming-II
Script file, Input commands, Output commands, Structure of function file, Inline functions, Feval command, Comparison between script file and function file

Conditional statements and Loop
Relational and Logical Operators, If-else statements, Switch-case statements, Forloop, While loop, Special commands (Break and continue), Import data from large database, Export data to own file or database

2D Plotting
In-built functions for plotting, Multiple plotting with special graphics, Curve fitting, Interpolation, Basic fitting interface

3D Plotting
Use of meshgrid function, Mesh plot, Surface plot, Plots with special graphics

Programming with Python

Introduction
History, Features, Setting up path, Working with Python, Basic Syntax, Variable and Data Types, Operator

Conditional Statements
If, If- else, Nested if-else, Looping, For, While, Nested loops

Control Statements
Break, Continue, Pass

String Manipulation
Accessing Strings, Basic Operations, String slices, Function and Methods

Lists
Maulana Abul Kalam Azad University of Technology, West Bengal
(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Computer Science & Engineering
(Applicable from the academic session 2018-2019)

Introduction, Accessing list, Operations, Working with lists, Function and Methods

Tuple
Introduction, Accessing tuples, Operations, Working, Functions and Methods

Dictionaries
Introduction, Accessing values in dictionaries, Working with dictionaries, Properties

Functions
Defining a function, Calling a function, Types of functions, Function Arguments, Anonymous functions, Global and local variables

Modules
Importing module, Math module, Random module, Packages, Composition, Input-Output Printing on screen, Reading data from keyboard, Opening and closing file, Reading and writing files, Functions

Exception Handling
Exception, Exception Handling, Except clause, Try? finally clause, User Defined Exceptions.

<table>
<thead>
<tr>
<th>Laboratory Experiments:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>