Course Description

PAPER NAME : Design & Analysis of Algorithm PAPER CODE : PCC-CS 404 & PCC-CS 494

Course Description

Course Title/Code: Design and Analysis of Algorithm/PCC-CS404 & PCC-CS494

Semester:- <u>2nd</u> Year:- <u>2nd</u> Group:- <u>A</u>

Name of the Faculty: Sucharita Das

E-mail: sucharita.das007@gmail.com

i) Course Objective:

Students will be able to apply different programming design paradigm to develop new algorithms and also analyze the efficiency of its algorithm.

ii) Course Outcomes:

After completion of this course the students are expected to be able to demonstrate following knowledge, skills and attitudes.

a) The Students will be able to:

Course Outcomes		
PCC-CS4 04.1	Express a logic sentence in terms of predicates, quantifiers, and logical connectives . (BT-Level 1)	60% marks
PCC-CS4 04.2	Derive the solution for a given problem using deductive logic and prove the solution based on logical inference. (BT-Level 2)	60% marks
PCC-CS4 04.3	Classify its algebraic structure for a given a mathematical problem. (BT-Level 3)	60% marks
PCC-CS4 04.4	Evaluate Boolean functions and simplify expressions using the properties of Boolean algebra. (BT-Level 4)	60% marks
PCC-CS4	Develop the given problem as graph networks and solve with techniques of graph eory. (BT-Level 3)	

Once the student has successfully complete this course, he/she must be able to answer the following questions or perform/demonstrate the following:

SN	QUESTION	BT- LEVEL
1.	What do you understand by an algorithm?	1
2.	What are the analytic issues of an algorithm?	1
3.	Write an algorithm to find the maximum number among three numbers and also calculate the running time complexity.	1
4.	Write an algorithm to calculate the sum of two matrices and also calculate the running time complexity.	1
5.	Define Cook's theorem. Prove that 3-SAT is NP- Complete.	2
6.	Find out the Recurrence relation of recursive Tower of Hanoi problem and solve it for the input size n.	3
7.	Solve the following recurrence using iteration method. 1. $T(n)=2T(n/2) + O(n)$	3
8.	Solve the following recurrence using master method. 1. $T(n)=2T(n/2) + O(n)$ 2. $T(n)=4T(n/2) + O(n)$ 3. $T(n)=T(n/2) + O(n)$	3
9.	Show that the following equation is correct: $33n^2 + 4n = \Omega(n^2)$	3
10.	Solve $T(n) = aT(n/b) + O(n^k)$ where $a > 1$ and $b \ge 1$.	3
11.	Find out the running time complexity of the Quick sort algorithm in Best, Worst and Average cases.	4
12.	Find out the running time complexity of the N-Queen problem.	4
13.	Implement adjacent matrix and adjacent list of a given graph and also conclude which representation is better.	5
14.	Implement graph traversal techniques like BFS and DFS .	5
15.	Implement Binary Search with the help of Divide & Conquer strategy.	6
16.	Implement shortest path using Dijkstra's algorithm with the help of dynamic programming strategy.	6

b)

Design & Analysis of Algorithm syllabus [in Chapters] Code: CS501 Contact: 3L + 1T

CHAPTER-1

Complexity Analysis: [4L]

Time and Space Complexity, Different Asymptotic notations – their mathematical significance

CHAPTER-2

Heap Sort and its complexity [2L]

CHAPTER-3

Divide and Conquer: [3L]

Basic method, use, following case studies with proper analysis.

- 1) Binary Search.
- 2) Merge Sort.
- 3) Quick Sort and their complexity.

CHAPTER-4

Dynamic Programming: [4L]

Basic method, use, following case studies with proper analysis.

- 1) Matrix Chain Multiplication.
- 2) All pair shortest paths
 - a. Floyd-Warshall Algorithm.
- 3) Single source shortest path.
 - a. Dijkstra's Algorithm.
 - b. Bellmanford Algorithm.

CHAPTER-5

Backtracking: [2L]

Basic method, use, following case studies with proper analysis.

- 1) n queens problem.
- 2) Graph coloring problem.

CHAPTER-6

Greedy Method: [4L]

Basic method, use, ,following case studies with proper analysis.

- 1) Knapsack problem.
- 2) Job sequencing with deadlines.

- 3) Minimum cost spanning tree a. Prim's Algorithm.
 - b. Kruskal's Algorithm.

CHAPTER-7

Lower Bound Theory: [1L]

Prove O(nlg(n)) bound for comparison sort.

CHAPTER-8

Disjoint set manipulation: [1L]

Set manipulation algorithm like UNION-FIND, union by rank.

CHAPTER-9

Graph traversal algorithm: [3L]

- 1) Breadth First Search(BFS)
- 2) Depth First Search(DFS)
- 3) Classification of edges tree, forward, back and cross edges complexity and comparison

CHAPTER-10

String matching problem: [2L]

Different techniques Naive algorithm, string matching using finite automata, and Knuth, Morris, Pratt (KMP) algorithm with their complexities.

CHAPTER-11

Amortized Analysis: [2L]

Aggregate, Accounting, and Potential Method.

CHAPTER-12

Network Flow: [3L]

Ford Fulkerson algorithm, Max-Flow Min-Cut theorem (Statement and Illustration)

CHAPTER-13

Matrix Manipulation Algorithm: [3L]

Strassen's matrix manipulation algorithm; application of matrix multiplication to solution of simultaneous linear equations using LUP decomposition, Inversion of matrix and Boolean matrix multiplication.

CHAPTER-14

Notion of NP-completeness: [4L]

P class, NP class, NP hard class, NP complete class – their interrelationship, Satisfiability problem, Cook's theorem (Statement only), and Clique decision problem.

CHAPTER-15

Approximation Algorithms:[1L]

Necessity of approximation scheme, performance guarantee, polynomial time approximation schemes, vertex cover problem, travelling salesman problem.

c) Chapter Layout

Chapter - 1	Complexity Analysis	4 HRS	1	6 HRS
Chapter – 2	er – 2 Heap Sort and its complexity		1	3 HRS
Chapter – 3	Divide and Conquer	3 HRS	1	3 HRS
Chapter – 4	Dynamic Programming	4 HRS	1	6 HRS
Chapter – 5	Backtracking	2 HRS		3 HRS
Chapter – 6	Greedy Method	4 HRS	1	3 HRS
Chapter – 7	Lower Bound Theory	1 HRS		
Chapter – 8	Disjoint set manipulation	1 HRS	1	
Chapter – 9	Graph traversal algorithm	3 HRS	1	3 HRS
Chapter – 10	String matching problem	2 HRS	1	3 HRS
Chapter – 11	Amortized Analysis	2 HRS		
Chapter – 12	Network Flow:	3 HRS	1	
Chapter – 13	Matrix Manipulation Algorithm	3 HRS	1	
Chapter – 14	Notion of NP-completeness	4 HRS	1	
Chapter - 15	Approximation Algorithms	1 HRS		
Total		39 HRS	11	30 HRS

d) Textbooks:

- 1. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein , "Introduction to Algorithms"
- 2. Aho, J. Hopcroft and J. Ullman "The Design and Analysis of Algorithms" D. E. Knuth "The Art of Computer Programming", Vol. 3
- 3. Jon Kleiberg and Eva Tardos, "Algorithm Design"

e) Reference Books:

- 1. K. Mehlhorn , "Data Structures and Algorithms" Vol. I & Vol. 2.
- 2. S. Baase "Computer Algorithms"
- 3. E. Horowitz and Shani "Fundamentals of Computer Algorithms"

f) Evaluation Scheme:

1) THEORY

Evaluation Criteria	Marks
First & Second Internal Exam*	15
Quiz/ Assignments	10
Attendance	5

University Exam	70
Total	100

*Two internal examinations are conducted; based on those two tests, average of them are considered in a scale of 15.

University Grading System:

Grade	Marks
0	90% and above
E	80 - 89.9%
А	70 – 79.9%
В	60 - 69.9%
С	50 - 59.9%
D	40 - 49.9%
F	Below 40%

2) LABORATORY

Evaluation Criteria	Marks
Internal Exam*	40
University Exam	60
Total	100

* Internal Evaluation will be based on daily lab performance as per the following

schedule:

g) Laboratory Evaluation:

Expt. No.	Experiment Name	Schedule	Marks
P1	 Experiment on different Searching Techniques and also judge the running time complexity. List of Experiments 1) Linear Search 2) Binary Search 	3 HRS	2 + 2
P2	Experiment on different Sorting techniques and also judge the running time complexity. List of Experiments 3) Merge Sort 4) Quick Sort	3 HRS	2 + 2
Р3	Experiment on different Sorting techniques and also judge the running time complexity. periments 5) Heap Sort	3 HRS	2 + 2

Course Description on Design & Analysis of Algorithm PCC-CS404/PCC-CS494

	6) Counting Sort		
Р4	Experiment on some recursion problems also judge the running time complexity as well as plot the graph. List of Experiments 7) Calculate x ^y 8) N th Fibonacci Number 9) Tower of Hanoi etc and	3 HRS	1+1+2
Р5	Experiment on Dynamic Programming algorithm strategy and also judge the running time complexity.10) Matrix Chain Multiplication.	3 HRS	4
P6	Experiment on Dynamic Programming algorithm strategy and also judge the running time complexity. 11) Floyd's Algorithm	3 HRS	4
Р7	Experiment on Backtracking algorithm strategy and also judge the running time complexity. List of Experiments 12) 4 Queen 13) Graph Coloring	3 HRS	2+2
P8	Experiment on Minimum Spanning Tree and also judge the running time complexity. (Any one) List of Experiments 14) Prim's Algorithm 15) Kruskal's Algorithm	3 HRS	4
Р9	Experiment on Graph Traversal Techniques and also judge the running time complexity. List of Experiments 16) BFS 17) DFS	3 HRS	2 + 2
P10	Experiment on String Matching Algorithm and also judge the running time complexity. 18) KMP	3 HRS	4

Overall Course Attainment Target

Attainment Level	Inference	Marks
Attainment Level 1	50% of the students have attained more than the target level of that CO	1
Attainment Level 2	60% of the students have attained more than the target level of that CO	2
Attainment Level 3	70% of the students have attained more than the target level of that CO	3

(70% of university and 30% of the internal exam) will be = Attainment Level 3

Take een set on the basis of last year's performance / result by the students, student quality this year and difficulty level of the course.

Course Description on Design & Analysis of Algorithm PCC-CS404/PCC-CS494 |

h) A. Weekly Lesson Plan

Week	Lecture	Tutorial	Laboratory	Assignment/Quiz
1	Complexity Analysis.	Tutorial on Linear/Non Linear Data Structures. (<u>TS1</u>)	Review on basic algorithms.	
2	Heap Sort.	Tutorial on Asymptotic Notations & Recurrences (<u>TS2</u>)	Recursion (P4)	Assignment - I <u>(A1)</u>
3	Binary Search, Merge Sort, Quick Sort.	Tutorial on Heap Sort & Binary Search. <u>(TS3)</u>	Linear & Binary Search <u>(P1)</u>	
4	Matrix Chain Multiplication. Single Source Shortest Path. (Dijkstra's & Bellman Ford)	Tutorial on Binary Search, Merge Sort & Quick Sort. (<u>TS4)</u>	Sorting (P2)	Assignment - II (A2)
5	All Pair Shortest Path (Floyd's Algorithm). N-Queen, Graph Coloring.	Tutorial on Matrix Chain Multiplication & Shortest Path Problem. <u>(TS5)</u>	Sorting (P3)	Quiz – I (Q1)
6	Knapsack problem. Kruskal's Algorithm. Prim's Algorithm.	Tutorial on Floyd's algorithm. <u>(TS6)</u>	Matrix Chain <u>(P5)</u>	
7	Job Sequencing with deadline. Lower Bound Theory. Disjoint set manipulation.	Tutorial on Knapsack Problem & Job Sequencing. <u>(TS7)</u>	Floyd's <u>(P6)</u>	Assignment - III <u>(A3)</u>
8	Graph traversal algorithm (BFS & DFS)	Tutorial on MST. <u>(TS8)</u>	N-Queen & Graph Coloring <u>(P7)</u>	Quiz – II (Q2)
9	String Matching.	Tutorial on BFS & DFS. (TS9)	Prim's & Kruskal's <u>(P8)</u>	
10	Amortized Analysis Approximation Algorithms.		BFS & DFS <u>(P9)</u>	
11	Network Flow, Ford- Fulkerson algorithm.			
12	System of Linear Equations Solve by LUP. Strassen's Matrix Multiplication. Matrix Inversion & Declean Matrix	Tutorial on Network Flow. (<u>TS12)</u>	KMP <u>(P10)</u>	
13	Notion of NP-completeness.	Tutorial on LUP. <u>(TS10)</u>		Quiz – III

Course Description on Design & Analysis of Algorithm PCC-CS404/PCC-CS494 |

Tutorial on Matrix Inversion.	(Q3)
<u>(TS11)</u>	

